#ifndef lint #ifndef NOID static char elsieid[] = "%W%"; #endif /* !defined NOID */ #endif /* !defined lint */ /* ** Leap second handling from Bradley White (bww@k.gp.cs.cmu.edu). ** POSIX-format TZ environment variable handling from Guy Harris ** (guy@auspex.uucp). */ /*LINTLIBRARY*/ #include "tzfile.h" #include "time.h" #include "string.h" #include "ctype.h" #include "stdlib.h" #include "stdio.h" /* for FILENAME_MAX */ #include "fcntl.h" /* for O_RDONLY */ #include "nonstd.h" #ifdef __TURBOC__ #include "io.h" /* for open et al. prototypes */ #endif /* defined __TURBOC__ */ #define ACCESS_MODE O_RDONLY #ifdef O_BINARY #define OPEN_MODE O_RDONLY | O_BINARY #else /* !defined O_BINARY */ #define OPEN_MODE O_RDONLY #endif /* !defined O_BINARY */ #ifndef TRUE #define TRUE 1 #define FALSE 0 #endif /* !defined TRUE */ static long detzcode P((const char * codep)); static void settzname P((const struct state *sp)); static char * getzname P((const char *strp)); static char * getnum P((const char *strp, int *nump, int min, int max)); static char * gettime P((const char *strp, long *timep)); static char * getoffset P((const char *strp, long *offsetp)); static char * getrule P((const char *strp, struct rule *rulep)); static time_t transtime P((time_t janfirst, int year, const struct rule *rulep, long offset)); static int tzparse P((const char *name, struct state *sp)); #ifdef STD_INSPIRED struct tm * offtime P((const time_t * clockp, long offset)); #endif /* !defined STD_INSPIRED */ static void timesub P((const time_t * clockp, long offset, const struct state * sp, struct tm * tmp)); static int tzload P((const char * name, struct state * sp)); void tzsetwall P((void)); struct ttinfo { /* time type information */ long tt_gmtoff; /* GMT offset in seconds */ int tt_isdst; /* used to set tm_isdst */ int tt_abbrind; /* abbreviation list index */ }; struct lsinfo { /* leap second information */ time_t ls_trans; /* transition time */ long ls_corr; /* correction to apply */ }; struct state { int leapcnt; int timecnt; int typecnt; int charcnt; time_t ats[TZ_MAX_TIMES]; unsigned char types[TZ_MAX_TIMES]; struct ttinfo ttis[TZ_MAX_TYPES]; char chars[TZ_MAX_CHARS + 1]; struct lsinfo lsis[TZ_MAX_LEAPS]; }; static struct state lclstate; static struct state gmtstate; static int lcl_is_set; static int gmt_is_set; char * tzname[2] = { "GMT", "GMT" }; #ifdef USG_COMPAT time_t timezone = 0; int daylight = 0; #endif /* defined USG_COMPAT */ #ifdef TZA_COMPAT char * tz_abbr; /* compatibility w/older versions */ #endif /* defined TZA_COMPAT */ static long detzcode(codep) const char * codep; { register long result; register int i; result = 0; for (i = 0; i < 4; ++i) result = (result << 8) | (codep[i] & 0xff); return result; } static void settzname(sp) register const struct state * sp; { register int i; tzname[0] = tzname[1] = &sp->chars[0]; #ifdef USG_COMPAT timezone = -sp->ttis[0].tt_gmtoff; daylight = 0; #endif /* defined USG_COMPAT */ for (i = 1; i < sp->typecnt; ++i) { register const struct ttinfo * ttisp; ttisp = &sp->ttis[i]; if (ttisp->tt_isdst) { tzname[1] = &sp->chars[ttisp->tt_abbrind]; #ifdef USG_COMPAT daylight = 1; #endif /* defined USG_COMPAT */ } else { tzname[0] = &sp->chars[ttisp->tt_abbrind]; #ifdef USG_COMPAT timezone = -ttisp->tt_gmtoff; #endif /* defined USG_COMPAT */ } } } static int tzload(name, sp) register const char * name; register struct state * sp; { register const char * p; register int i; register int fid; if (name == 0 && (name = TZDEFAULT) == 0) return -1; { register int doaccess; char fullname[FILENAME_MAX + 1]; if (name[0] == ':') name++; doaccess = name[0] == '/'; if (!doaccess) { if ((p = TZDIR) == NULL) return -1; if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) return -1; (void) strcpy(fullname, p); (void) strcat(fullname, "/"); (void) strcat(fullname, name); /* ** Set doaccess if '.' (as in "../") shows up in name. */ if (strchr(name, '.') != NULL) doaccess = TRUE; name = fullname; } if (doaccess && access(name, ACCESS_MODE) != 0) return -1; if ((fid = open(name, OPEN_MODE)) == -1) return -1; } { register const struct tzhead * tzhp; char buf[sizeof *sp]; i = read(fid, buf, sizeof buf); if (close(fid) != 0 || i < sizeof *tzhp) return -1; tzhp = (struct tzhead *) buf; sp->leapcnt = (int) detzcode(tzhp->tzh_leapcnt); sp->timecnt = (int) detzcode(tzhp->tzh_timecnt); sp->typecnt = (int) detzcode(tzhp->tzh_typecnt); sp->charcnt = (int) detzcode(tzhp->tzh_charcnt); if (sp->leapcnt > TZ_MAX_LEAPS || sp->timecnt > TZ_MAX_TIMES || sp->typecnt == 0 || sp->typecnt > TZ_MAX_TYPES || sp->charcnt > TZ_MAX_CHARS) return -1; if (i < sizeof *tzhp + sp->timecnt * (4 + sizeof (char)) + sp->typecnt * (4 + 2 * sizeof (char)) + sp->charcnt * sizeof (char) + sp->leapcnt * 2 * 4) return -1; p = buf + sizeof *tzhp; for (i = 0; i < sp->timecnt; ++i) { sp->ats[i] = detzcode(p); p += 4; } for (i = 0; i < sp->timecnt; ++i) sp->types[i] = (unsigned char) *p++; for (i = 0; i < sp->typecnt; ++i) { register struct ttinfo * ttisp; ttisp = &sp->ttis[i]; ttisp->tt_gmtoff = detzcode(p); p += 4; ttisp->tt_isdst = (unsigned char) *p++; ttisp->tt_abbrind = (unsigned char) *p++; } for (i = 0; i < sp->charcnt; ++i) sp->chars[i] = *p++; sp->chars[i] = '\0'; /* ensure '\0' at end */ for (i = 0; i < sp->leapcnt; ++i) { register struct lsinfo * lsisp; lsisp = &sp->lsis[i]; lsisp->ls_trans = detzcode(p); p += 4; lsisp->ls_corr = detzcode(p); p += 4; } } /* ** Check that all the local time type indices are valid. */ for (i = 0; i < sp->timecnt; ++i) if (sp->types[i] >= sp->typecnt) return -1; /* ** Check that all abbreviation indices are valid. */ for (i = 0; i < sp->typecnt; ++i) if (sp->ttis[i].tt_abbrind >= sp->charcnt) return -1; /* ** Set tzname elements to initial values. */ if (sp == &lclstate) settzname(sp); return 0; } struct rule { int r_type; /* type of rule */ int r_day; /* day number of rule */ int r_week; /* week number of rule */ int r_mon; /* month number of rule */ long r_time; /* transition time of rule */ }; #define JULIAN_DAY 0 /* Jn - Julian day */ #define DAY_OF_YEAR 1 /* n - day of year */ #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ static const int mon_lengths[2][MONSPERYEAR] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static const int year_lengths[2] = { DAYSPERNYEAR, DAYSPERLYEAR }; /* ** Given a pointer into a time zone string, scan until a character that is not ** a valid character in a zone name is found. Return a pointer to that ** character. */ static char * getzname(strp) register const char * strp; { register char c; while ((c = *strp) != '\0' && !isdigit(c) && c != ',' && c != '-' && c != '+') ++strp; return strp; } /* ** Given a pointer into a time zone string, extract a number from that string. ** Check that the number is within a specified range; if it is not, return ** NULL. ** Otherwise, return a pointer to the first character not part of the number. */ static char * getnum(strp, nump, min, max) register const char * strp; int * nump; int min; int max; { register char c; register int num; num = 0; while ((c = *strp) != '\0' && isdigit(c)) { num = num * 10 + (c - '0'); if (num > max) return NULL; /* illegal value */ ++strp; } if (num < min) return NULL; /* illegal value */ *nump = num; return strp; } /* ** Given a pointer into a time zone string, extract a time, in hh[:mm[:ss]] ** form, from the string. ** If any error occurs, return NULL. ** Otherwise, return a pointer to the first character not part of the time. */ static char * gettime(strp, timep) register const char * strp; long * timep; { int num; strp = getnum(strp, &num, 0, HOURSPERDAY / 2); if (strp == NULL) return NULL; *timep = num * SECSPERHOUR; if (*strp == ':') { ++strp; strp = getnum(strp, &num, 0, MINSPERHOUR - 1); if (strp == NULL) return NULL; *timep += num * SECSPERMIN; if (*strp == ':') { ++strp; strp = getnum(strp, &num, 0, SECSPERMIN - 1); if (strp == NULL) return NULL; *timep += num; } } return strp; } /* ** Given a pointer into a time zone string, extract an offset, in ** [+-]hh[:mm[:ss]] form, from the string. ** If any error occurs, return NULL. ** Otherwise, return a pointer to the first character not part of the time. */ static char * getoffset(strp, offsetp) register const char * strp; long * offsetp; { register int neg; if (*strp == '-') { neg = 1; ++strp; } else if (*strp == '+' || isdigit(*strp)) neg = 0; else return NULL; /* illegal offset */ strp = gettime(strp, offsetp); if (strp == NULL) return NULL; /* illegal time */ if (neg) *offsetp = -*offsetp; return strp; } /* ** Given a pointer into a time zone string, extract a rule in the form ** date[/time]. See POSIX section 8 for the format of "date" and "time". ** If a valid rule is not found, return NULL. ** Otherwise, return a pointer to the first character not part of the rule. */ static char * getrule(strp, rulep) const char * strp; register struct rule * rulep; { if (*strp == 'J') { /* ** Julian day. */ rulep->r_type = JULIAN_DAY; ++strp; strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); } else if (*strp == 'M') { /* ** Month, week, day. */ rulep->r_type = MONTH_NTH_DAY_OF_WEEK; ++strp; strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); if (strp == NULL) return NULL; if (*strp++ != '.') return NULL; strp = getnum(strp, &rulep->r_week, 1, 5); if (strp == NULL) return NULL; if (*strp++ != '.') return NULL; strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); } else if (isdigit(*strp)) { /* ** Day of year. */ rulep->r_type = DAY_OF_YEAR; strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); } else return NULL; /* invalid format */ if (strp == NULL) return NULL; if (*strp == '/') { /* ** Time specified. */ ++strp; strp = gettime(strp, &rulep->r_time); if (strp == NULL) return NULL; } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ return strp; } /* ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the ** year, a rule, and the offset from GMT at the time that rule takes effect, ** calculate the Epoch-relative time that rule takes effect. */ static time_t transtime(janfirst, year, rulep, offset) time_t janfirst; int year; register const struct rule * rulep; long offset; { register int leapyear; register time_t value; register int i; int d, m1, yy0, yy1, yy2, dow; leapyear = isleap(year); switch (rulep->r_type) { case JULIAN_DAY: /* ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap ** years. ** In non-leap years, or if the day number is 59 or less, just ** add SECSPERDAY times the day number-1 to the time of ** January 1, midnight, to get the day. */ value = janfirst + (rulep->r_day - 1) * SECSPERDAY; if (leapyear && rulep->r_day >= 60) value += SECSPERDAY; break; case DAY_OF_YEAR: /* ** n - day of year. ** Just add SECSPERDAY times the day number to the time of ** January 1, midnight, to get the day. */ value = janfirst + rulep->r_day * SECSPERDAY; break; case MONTH_NTH_DAY_OF_WEEK: /* ** Mm.n.d - nth "dth day" of month m. */ value = janfirst; for (i = 0; i < rulep->r_mon - 1; ++i) value += mon_lengths[leapyear][i] * SECSPERDAY; /* ** Use Zeller's Congruence to get day-of-week of first day of ** month. */ m1 = (rulep->r_mon + 9) % 12 + 1; yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; yy1 = yy0 / 100; yy2 = yy0 % 100; dow = ((26 * m1 - 2) / 10 + 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; if (dow < 0) dow += DAYSPERWEEK; /* ** "dow" is the day-of-week of the first day of the month. Get ** the day-of-month (zero-origin) of the first "dow" day of the ** month. */ d = rulep->r_day - dow; if (d < 0) d += DAYSPERWEEK; for (i = 1; i < rulep->r_week; ++i) { if (d + DAYSPERWEEK >= mon_lengths[leapyear][rulep->r_mon - 1]) break; d += DAYSPERWEEK; } /* ** "d" is the day-of-month (zero-origin) of the day we want. */ value += d * SECSPERDAY; break; } /* ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in ** question. To get the Epoch-relative time of the specified local ** time on that day, add the transition time and the current offset ** from GMT. */ return value + rulep->r_time + offset; } /* ** Given a POSIX section 8-style TZ string, fill in the rule tables as ** appropriate. */ static int tzparse(name, sp) const char * name; register struct state * sp; { char * stdname; char * dstname; int stdlen; int dstlen; long stdoffset; long dstoffset; register time_t * atp; register unsigned char * typep; register char * cp; register int load_result; stdname = name; name = getzname(name); stdlen = name - stdname; /* length of standard zone name */ if (stdlen == 0) return -1; name = getoffset(name, &stdoffset); if (name == NULL) return -1; load_result = tzload(TZDEFRULES, sp); if (load_result != 0) sp->leapcnt = 0; /* so, we're off a little */ if (*name != '\0') { dstname = name; name = getzname(name); dstlen = name - dstname; /* length of DST zone name */ if (dstlen == 0) return -1; if (*name != '\0' && *name != ',' && *name != ';') { name = getoffset(name, &dstoffset); if (name == NULL) return -1; } else dstoffset = stdoffset - 1 * SECSPERHOUR; if (*name == ',' || *name == ';') { struct rule start; struct rule end; register int year; register time_t janfirst; time_t starttime; time_t endtime; ++name; if ((name = getrule(name, &start)) == NULL) return -1; if (*name++ != ',') return -1; if ((name = getrule(name, &end)) == NULL) return -1; if (*name != '\0') return -1; sp->typecnt = 2; /* standard time and DST */ /* ** Two transitions per year, from 1970 to 2038. */ sp->timecnt = 2 * (2038 - 1970 + 1); if (sp->timecnt > TZ_MAX_TIMES) return -1; sp->ttis[0].tt_gmtoff = -dstoffset; sp->ttis[0].tt_isdst = 1; sp->ttis[0].tt_abbrind = stdlen + 1; sp->ttis[1].tt_gmtoff = -stdoffset; sp->ttis[1].tt_isdst = 0; sp->ttis[1].tt_abbrind = 0; atp = sp->ats; typep = sp->types; for (year = 1970, janfirst = 0; year <= 2038; year++) { starttime = transtime(janfirst, year, &start, stdoffset); endtime = transtime(janfirst, year, &end, dstoffset); if (starttime > endtime) { *atp++ = endtime; *typep++ = 1; /* DST ends */ *atp++ = starttime; *typep++ = 0; /* DST begins */ } else { *atp++ = starttime; *typep++ = 0; /* DST begins */ *atp++ = endtime; *typep++ = 1; /* DST ends */ } janfirst += year_lengths[isleap(year)] * SECSPERDAY; } } else { int sawstd; int sawdst; long stdfix; long dstfix; long oldfix; int isdst; register int i; if (*name != '\0') return -1; if (load_result != 0) return -1; /* ** Compute the difference between the real and ** prototype standard and summer time offsets ** from GMT, and put the real standard and summer ** time offsets into the rules in place of the ** prototype offsets. */ sawstd = FALSE; sawdst = FALSE; stdfix = 0; dstfix = 0; for (i = 0; i < sp->typecnt; ++i) { if (sp->ttis[i].tt_isdst) { oldfix = dstfix; dstfix = sp->ttis[i].tt_gmtoff + dstoffset; if (sawdst && (oldfix != dstfix)) return -1; sp->ttis[i].tt_gmtoff = -dstoffset; sp->ttis[i].tt_abbrind = stdlen + 1; sawdst = TRUE; } else { oldfix = stdfix; stdfix = sp->ttis[i].tt_gmtoff + stdoffset; if (sawstd && (oldfix != stdfix)) return -1; sp->ttis[i].tt_gmtoff = -stdoffset; sp->ttis[i].tt_abbrind = 0; sawstd = TRUE; } } /* ** Make sure we have both standard and summer time. */ if (!sawdst || !sawstd) return -1; /* ** Now correct the transition times by shifting ** them by the difference between the real and ** prototype offsets. Note that this difference ** can be different in standard and summer time; ** the prototype probably has a 1-hour difference ** between standard and summer time, but a different ** difference can be specified in TZ. */ isdst = FALSE; /* we start in standard time */ for (i = 0; i < sp->timecnt; ++i) { sp->ats[i] += isdst ? dstfix : stdfix; isdst = sp->ttis[sp->types[i]].tt_isdst; } } } else { dstlen = 0; sp->typecnt = 1; /* only standard time */ sp->timecnt = 0; sp->ttis[0].tt_gmtoff = -stdoffset; sp->ttis[0].tt_isdst = 0; sp->ttis[0].tt_abbrind = 0; } sp->charcnt = stdlen + 1; if (dstlen != 0) sp->charcnt += dstlen + 1; if (sp->charcnt > sizeof sp->chars) return -1; cp = sp->chars; (void) strncpy(cp, stdname, stdlen); cp += stdlen; *cp++ = '\0'; if (dstlen != 0) { (void) strncpy(cp, dstname, dstlen); *(cp + dstlen) = '\0'; } if (sp == &lclstate) settzname(sp); return 0; } static void tzsetgmt(sp) register struct state * sp; { sp->leapcnt = 0; /* so, we're off a little */ sp->timecnt = 0; sp->ttis[0].tt_gmtoff = 0; sp->ttis[0].tt_abbrind = 0; (void) strcpy(sp->chars, "GMT"); if (sp == &lclstate) settzname(sp); } void tzset() { register const char * name; lcl_is_set = TRUE; name = getenv("TZ"); if (name != 0 && *name == '\0') tzsetgmt(&lclstate); /* GMT by request */ else if (tzload(name, &lclstate) != 0) { if (name[0] == ':' || tzparse(name, &lclstate) != 0) tzsetgmt(&lclstate); } } void tzsetwall() { lcl_is_set = TRUE; if (tzload((char *) 0, &lclstate) != 0) tzsetgmt(&lclstate); } struct tm * localtime(timep) const time_t * timep; { register const struct state * sp; register const struct ttinfo * ttisp; register int i; time_t t; static struct tm tm; if (!lcl_is_set) tzset(); sp = &lclstate; t = *timep; if (sp->timecnt == 0 || t < sp->ats[0]) { i = 0; while (sp->ttis[i].tt_isdst) if (++i >= sp->typecnt) { i = 0; break; } } else { for (i = 1; i < sp->timecnt; ++i) if (t < sp->ats[i]) break; i = sp->types[i - 1]; } ttisp = &sp->ttis[i]; /* ** To get (wrong) behavior that's compatible with System V Release 2.0 ** you'd replace the statement below with ** t += ttisp->tt_gmtoff; ** timesub(&t, 0L, sp, &tm); */ timesub(&t, ttisp->tt_gmtoff, sp, &tm); tm.tm_isdst = ttisp->tt_isdst; tzname[tm.tm_isdst] = &sp->chars[ttisp->tt_abbrind]; #ifdef TM_ZONE tm.TM_ZONE = &sp->chars[ttisp->tt_abbrind]; #endif /* defined TM_ZONE */ return &tm; } struct tm * gmtime(clock) const time_t * clock; { static struct tm tm; if (!gmt_is_set) { gmt_is_set = TRUE; if (tzload("GMT", &gmtstate) != 0) tzsetgmt(&gmtstate); } timesub(clock, 0L, &gmtstate, &tm); #ifdef TM_ZONE tm.TM_ZONE = "GMT"; /* UCT ? */ #endif /* defined TM_ZONE */ return &tm; } #ifdef STD_INSPIRED struct tm * offtime(clock, offset) const time_t * clock; long offset; { static struct tm tm; if (!gmt_is_set) { gmt_is_set = TRUE; if (tzload("GMT", &gmtstate) != 0) tzsetgmt(&gmtstate); } timesub(clock, offset, &gmtstate, &tm); return &tm; } #endif /* defined STD_INSPIRED */ static void timesub(clock, offset, sp, tmp) const time_t * clock; long offset; register const struct state * sp; register struct tm * tmp; { register const struct lsinfo * lp; register long days; register long rem; register int y; register int yleap; register const int * ip; register long corr; register int hit; corr = 0; hit = FALSE; y = sp->leapcnt; while (--y >= 0) { lp = &sp->lsis[y]; if (*clock >= lp->ls_trans) { if (*clock == lp->ls_trans) hit = ((y == 0 && lp->ls_corr > 0) || lp->ls_corr > sp->lsis[y-1].ls_corr); corr = lp->ls_corr; break; } } days = *clock / SECSPERDAY; rem = *clock % SECSPERDAY; #ifdef mc68k if (*clock == 0x80000000) { /* ** A 3B1 muffs the division on the most negative number. */ days = -24855; rem = -11648; } #endif /* mc68k */ rem += (offset - corr); while (rem < 0) { rem += SECSPERDAY; --days; } while (rem >= SECSPERDAY) { rem -= SECSPERDAY; ++days; } tmp->tm_hour = (int) (rem / SECSPERHOUR); rem = rem % SECSPERHOUR; tmp->tm_min = (int) (rem / SECSPERMIN); tmp->tm_sec = (int) (rem % SECSPERMIN); if (hit) /* * A positive leap second requires a special * representation. This uses "... ??:59:60". */ tmp->tm_sec += 1; tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK); if (tmp->tm_wday < 0) tmp->tm_wday += DAYSPERWEEK; y = EPOCH_YEAR; if (days >= 0) for ( ; ; ) { yleap = isleap(y); if (days < (long) year_lengths[yleap]) break; ++y; days = days - (long) year_lengths[yleap]; } else do { --y; yleap = isleap(y); days = days + (long) year_lengths[yleap]; } while (days < 0); tmp->tm_year = y - TM_YEAR_BASE; tmp->tm_yday = (int) days; ip = mon_lengths[yleap]; for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon)) days = days - (long) ip[tmp->tm_mon]; tmp->tm_mday = (int) (days + 1); tmp->tm_isdst = 0; #ifdef TM_ZONE tmp->TM_ZONE = ""; #endif /* defined TM_ZONE */ #ifdef TM_GMTOFF tmp->TM_GMTOFF = offset; #endif /* defined TM_GMTOFF */ } #ifdef BSD_COMPAT /* ** If ctime and localtime aren't in the same file on 4.3BSD systems, ** you can run into compilation problems--take ** cc date.c -lz ** (please). */ char * ctime(timep) const time_t * timep; { return asctime(localtime(timep)); } #endif /* defined BSD_COMPAT */ /* ** Adapted from code provided by Robert Elz, who writes: ** The "best" way to do mktime I think is based on an idea of Bob ** Kridle's (so its said...) from a long time ago. (mtxinu!kridle now). ** It does a binary search of the time_t space. Since time_t's are ** just 32 bits, its a max of 32 iterations (even at 64 bits it ** would still be very reasonable). ** ** This code does handle "out of bounds" values in the way described ** for "mktime" in the October, 1986 draft of the proposed ANSI C Standard; ** though this is an accident of the implementation and *cannot* be made to ** work correctly for the purposes there described. ** ** A warning applies if you try to use these functions with a version of ** "localtime" that has overflow problems (such as System V Release 2.0 ** or 4.3 BSD localtime). ** If you're not using GMT and feed a value to localtime ** that's near the minimum (or maximum) possible time_t value, localtime ** may return a struct that represents a time near the maximum (or minimum) ** possible time_t value (because of overflow). If such a returned struct tm ** is fed to timelocal, it will not return the value originally feed to ** localtime. */ #ifndef WRONG #define WRONG (-1) #endif /* !defined WRONG */ static void normalize(tensptr, unitsptr, base) int * tensptr; int * unitsptr; { if (*unitsptr >= base) { *tensptr += *unitsptr / base - 1; *unitsptr %= base; } else if (*unitsptr < 0) { --*tensptr; *unitsptr += base; if (*unitsptr < 0) { *tensptr -= 1 + (-*unitsptr) / base; *unitsptr = base - (-*unitsptr) % base; } } } static int tmcomp(atmp, btmp) register const struct tm * atmp; register const struct tm * btmp; { register int result; if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && (result = (atmp->tm_min - btmp->tm_min)) == 0) result = atmp->tm_sec - btmp->tm_sec; return result; } #define BREAKDOWN(t) (funcp == localtime || funcp == gmtime) ? \ *((*funcp)(&(t))) : *((*funcp)(&(t), offset)); static time_t time2(timeptr, funcp, offset, okayp) struct tm * timeptr; const struct tm * (* funcp)(); const long offset; int * okayp; { register int dir; register int bits; register int i; register int saved_seconds; time_t t; struct tm yourtm, mytm; *okayp = FALSE; yourtm = *timeptr; normalize(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR); normalize(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY); normalize(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR); while (yourtm.tm_mday <= 0) { --yourtm.tm_year; yourtm.tm_mday += year_lengths[isleap(yourtm.tm_year + TM_YEAR_BASE)]; } for ( ; ; ) { i = mon_lengths[isleap(yourtm.tm_year + TM_YEAR_BASE)][yourtm.tm_mon]; if (yourtm.tm_mday <= i) break; yourtm.tm_mday -= i; if (++yourtm.tm_mon >= MONSPERYEAR) { yourtm.tm_mon = 0; ++yourtm.tm_year; } } saved_seconds = yourtm.tm_sec; yourtm.tm_sec = 0; /* ** Calculate the number of magnitude bits in a time_t ** (this works regardless of whether time_t is ** signed or unsigned, though lint complains if unsigned). */ for (bits = 0, t = 1; t > 0; ++bits, t <<= 1) ; /* ** If time_t is signed, then 0 is the median value, ** if time_t is unsigned, then 1 << bits is median. */ t = (t < 0) ? 0 : ((time_t) 1 << bits); for ( ; ; ) { mytm = BREAKDOWN(t); dir = tmcomp(&mytm, &yourtm); if (dir != 0) { if (bits-- < 0) return WRONG; if (bits < 0) --t; else if (dir > 0) t -= (time_t) 1 << bits; else t += (time_t) 1 << bits; continue; } if (yourtm.tm_isdst >= 0 && mytm.tm_isdst != yourtm.tm_isdst) { /* ** Right time, wrong type. ** Hunt for right time, right type. ** It's okay to guess wrong since the guess ** gets checked. */ register const struct state * sp; register int j; time_t newt; sp = (const struct state *) ((funcp == localtime) ? &lclstate : &gmtstate); for (i = 0; i < sp->typecnt; ++i) { for (j = 0; j < sp->typecnt; ++j) { newt = t + sp->ttis[i].tt_gmtoff - sp->ttis[j].tt_gmtoff; mytm = BREAKDOWN(newt); if (tmcomp(&mytm, &yourtm) != 0) continue; if (mytm.tm_isdst != yourtm.tm_isdst) continue; /* ** We have a match. */ t = newt; goto label; } } /* ** Failed to find a match. */ return WRONG; } label: t += saved_seconds; *timeptr = BREAKDOWN(t); *okayp = TRUE; return t; } } static time_t time1(timeptr, funcp, offset) struct tm * timeptr; const struct tm * (* funcp)(); const long offset; { register time_t t; register const struct state * sp; register int samei, otheri; int okay; if (timeptr->tm_isdst > 1) return WRONG; t = time2(timeptr, funcp, offset, &okay); if (okay || timeptr->tm_isdst < 0) return t; /* ** We're supposed to assume that somebody took a time of one type, ** and did some math on it that yielded a "struct tm" that's bad. ** We try to divine the type they started from and adjust to the ** type they need. */ sp = (const struct state *) ((funcp == localtime) ? &lclstate : &gmtstate); for (samei = 0; samei < sp->typecnt; ++samei) { if (sp->ttis[samei].tt_isdst != timeptr->tm_isdst) continue; for (otheri = 0; otheri < sp->typecnt; ++otheri) { if (sp->ttis[otheri].tt_isdst == timeptr->tm_isdst) continue; timeptr->tm_sec += sp->ttis[otheri].tt_gmtoff - sp->ttis[samei].tt_gmtoff; timeptr->tm_isdst = !timeptr->tm_isdst; t = time2(timeptr, funcp, offset, &okay); if (okay) return t; timeptr->tm_sec -= sp->ttis[otheri].tt_gmtoff - sp->ttis[samei].tt_gmtoff; timeptr->tm_isdst = !timeptr->tm_isdst; } } return WRONG; } time_t mktime(timeptr) struct tm * timeptr; { return time1(timeptr, localtime, 0L); } #ifdef STD_INSPIRED time_t timelocal(timeptr) struct tm * timeptr; { return mktime(timeptr); } time_t timegm(timeptr) struct tm * timeptr; { return time1(timeptr, gmtime, 0L); } extern struct tm * offtime P((const time_t * clock, long offset)); time_t timeoff(timeptr, offset) struct tm * timeptr; const long offset; { return time1(timeptr, offtime, offset); } #endif /* defined STD_INSPIRED */ #ifdef CMUCS /* ** The following is supplied for compatibility with ** previous versions of the CMUCS runtime library. */ long gtime(tm) struct tm * tmp; { time_t t; if ((t = timelocal(tmp)) == WRONG) return -1L; return (long) t; } #endif /* defined CMUCS */