amath/src/real/ksin.c

118 lines
4.0 KiB
C

/*-
* Copyright (c) 2014-2017 Carsten Sonne Larsen <cs@innolan.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Project homepage:
* https://amath.innolan.net
*
* The original source code can be obtained from:
* http://www.netlib.org/fdlibm/k_sin.c
*
* =================================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* =================================================================
*/
/**
* @file ksin.c
* @brief Kernel sin function
*/
#include "prim.h"
static const double
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
/**
* @brief Kernel sin function
* @details
* <pre>
* Kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
*
* Algorithm
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
* 2. if x < 2^-27 (hx<0X3E400000 0), return x with inexact if x!=0.
* 3. sin(x) is approximated by a polynomial of degree 13 on [0,pi/4]
* 3 13
* sin(x) ~ x + S1*x + ... + S6*x
*
* where
*
* |sin(x) 2 4 6 8 10 12 | -58
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
* | x |
*
* 4. sin(x+y) = sin(x) + sin'(x')*y
* ~ sin(x) + (1-x*x/2)*y
*
* For better accuracy, let
* 3 2 2 2 2
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
* then 3 2
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
* </pre>
*/
double __kernel_sin(double x, double y, int iy)
{
double z, r, v;
int32_t ix;
GET_HIGH_WORD(ix, x);
ix &= 0x7FFFFFFF;
// |x| < 2**-27
if (ix < 0x3E400000)
{
// generate inexact
if ((int)x == 0)
{
return x;
}
}
z = x * x;
v = z * x;
r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
if (iy == 0)
{
return x + v * (S1 + z * r);
}
return x - ((z * (half * y - v * r) - y) - v * S1);
}