mirror of
https://gitlab.com/rnger/amath
synced 2025-10-06 02:49:59 +00:00
282 lines
6.8 KiB
Groff
282 lines
6.8 KiB
Groff
.TH "lib/real/sqrt.c" 3 "Tue Jan 24 2017" "Version 1.6.2" "amath" \" -*- nroff -*-
|
|
.ad l
|
|
.nh
|
|
.SH NAME
|
|
lib/real/sqrt.c \-
|
|
.SH SYNOPSIS
|
|
.br
|
|
.PP
|
|
\fC#include 'prim\&.h'\fP
|
|
.br
|
|
\fC#include 'math\&.h'\fP
|
|
.br
|
|
|
|
.SS "Functions"
|
|
|
|
.in +1c
|
|
.ti -1c
|
|
.RI "double \fBsqrt\fP (double x)"
|
|
.br
|
|
.RI "\fISquare root function\&. \fP"
|
|
.in -1c
|
|
.SS "Variables"
|
|
|
|
.in +1c
|
|
.ti -1c
|
|
.RI "static const double \fBone\fP = 1\&.0"
|
|
.br
|
|
.ti -1c
|
|
.RI "static const double \fBtiny\fP = 1\&.0e\-300"
|
|
.br
|
|
.in -1c
|
|
.SH "Function Documentation"
|
|
.PP
|
|
.SS "double sqrt (double x)"
|
|
|
|
.PP
|
|
Square root function\&.
|
|
.PP
|
|
\fBVersion:\fP
|
|
.RS 4
|
|
1\&.3
|
|
.RE
|
|
.PP
|
|
\fBDate:\fP
|
|
.RS 4
|
|
95/01/18
|
|
.RE
|
|
.PP
|
|
.PP
|
|
.nf
|
|
|
|
Return correctly rounded sqrt\&.
|
|
------------------------------------------
|
|
| Use the hardware sqrt if you have one |
|
|
------------------------------------------
|
|
Method:
|
|
Bit by bit method using integer arithmetic\&. (Slow, but portable)
|
|
1\&. Normalization
|
|
Scale x to y in [1,4) with even powers of 2:
|
|
find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
|
sqrt(x) = 2^k * sqrt(y)
|
|
2\&. Bit by bit computation
|
|
Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
|
i 0
|
|
i+1 2
|
|
s = 2*q , and y = 2 * ( y - q )\&. (1)
|
|
i i i i
|
|
.fi
|
|
.PP
|
|
.PP
|
|
.PP
|
|
.nf
|
|
To compute q from q , one checks whether
|
|
i+1 i
|
|
.fi
|
|
.PP
|
|
.PP
|
|
.PP
|
|
.nf
|
|
-(i+1) 2
|
|
(q + 2 ) <= y\&. (2)
|
|
i
|
|
-(i+1)
|
|
If (2) is false, then q = q ; otherwise q = q + 2 \&.
|
|
i+1 i i+1 i
|
|
.fi
|
|
.PP
|
|
.PP
|
|
.PP
|
|
.nf
|
|
With some algebric manipulation, it is not difficult to see
|
|
that (2) is equivalent to
|
|
-(i+1)
|
|
s + 2 <= y (3)
|
|
i i
|
|
.fi
|
|
.PP
|
|
.PP
|
|
.PP
|
|
.nf
|
|
The advantage of (3) is that s and y can be computed by
|
|
i i
|
|
the following recurrence formula:
|
|
if (3) is false
|
|
.fi
|
|
.PP
|
|
.PP
|
|
.PP
|
|
.nf
|
|
s = s , y = y ; (4)
|
|
i+1 i i+1 i
|
|
.fi
|
|
.PP
|
|
.PP
|
|
.PP
|
|
.nf
|
|
otherwise,
|
|
-i -(i+1)
|
|
s = s + 2 , y = y - s - 2 (5)
|
|
i+1 i i+1 i i
|
|
.fi
|
|
.PP
|
|
.PP
|
|
.PP
|
|
.nf
|
|
One may easily use induction to prove (4) and (5)\&.
|
|
Note\&. Since the left hand side of (3) contain only i+2 bits,
|
|
it does not necessary to do a full (53-bit) comparison
|
|
in (3)\&.
|
|
3\&. Final rounding
|
|
After generating the 53 bits result, we compute one more bit\&.
|
|
Together with the remainder, we can decide whether the
|
|
result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
|
(it will never equal to 1/2ulp)\&.
|
|
The rounding mode can be detected by checking whether
|
|
huge + tiny is equal to huge, and whether huge - tiny is
|
|
equal to huge for some floating point number 'huge' and 'tiny'\&.
|
|
.fi
|
|
.PP
|
|
.PP
|
|
.PP
|
|
.nf
|
|
Special cases:
|
|
sqrt(+-0) = +-0 \&.\&.\&. exact
|
|
sqrt(inf) = inf
|
|
sqrt(-ve) = NaN \&.\&.\&. with invalid signal
|
|
sqrt(NaN) = NaN \&.\&.\&. with invalid signal for signaling NaN
|
|
.fi
|
|
.PP
|
|
Other methods : see the \fBsquareroot\fP\&.
|
|
.PP
|
|
\fBCopyright:\fP
|
|
.RS 4
|
|
Copyright (C) 1993 by Sun Microsystems, Inc\&. All rights reserved\&. Developed at SunSoft, a Sun Microsystems, Inc\&. business\&. Permission to use, copy, modify, and distribute this software is freely granted, provided that this notice is preserved\&.
|
|
.RE
|
|
.PP
|
|
|
|
.PP
|
|
Definition at line 127 of file sqrt\&.c\&.
|
|
.PP
|
|
References one, and tiny\&.
|
|
.PP
|
|
Referenced by acos(), acosh(), asin(), asinh(), csqrt(), hypot(), pow(), and RealNumber::SquareRoot()\&.
|
|
.PP
|
|
.nf
|
|
128 {
|
|
129 double z;
|
|
130 sword sign = (int)0x80000000;
|
|
131 uword r,t1,s1,ix1,q1;
|
|
132 sword ix0,s0,q,m,t,i;
|
|
133
|
|
134 EXTRACT_WORDS(ix0,ix1,x);
|
|
135
|
|
136 /* take care of Inf and NaN */
|
|
137 if((ix0&0x7ff00000)==0x7ff00000) {
|
|
138 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
|
|
139 sqrt(-inf)=sNaN */
|
|
140 }
|
|
141 /* take care of zero */
|
|
142 if(ix0<=0) {
|
|
143 if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
|
|
144 else if(ix0<0)
|
|
145 return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
|
|
146 }
|
|
147 /* normalize x */
|
|
148 m = (ix0>>20);
|
|
149 if(m==0) { /* subnormal x */
|
|
150 while(ix0==0) {
|
|
151 m -= 21;
|
|
152 ix0 |= (ix1>>11);
|
|
153 ix1 <<= 21;
|
|
154 }
|
|
155 for(i=0; (ix0&0x00100000)==0; i++) ix0<<=1;
|
|
156 m -= i-1;
|
|
157 ix0 |= (ix1>>(32-i));
|
|
158 ix1 <<= i;
|
|
159 }
|
|
160 m -= 1023; /* unbias exponent */
|
|
161 ix0 = (ix0&0x000fffff)|0x00100000;
|
|
162 if(m&1) { /* odd m, double x to make it even */
|
|
163 ix0 += ix0 + ((ix1&sign)>>31);
|
|
164 ix1 += ix1;
|
|
165 }
|
|
166 m >>= 1; /* m = [m/2] */
|
|
167
|
|
168 /* generate sqrt(x) bit by bit */
|
|
169 ix0 += ix0 + ((ix1&sign)>>31);
|
|
170 ix1 += ix1;
|
|
171 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
|
172 r = 0x00200000; /* r = moving bit from right to left */
|
|
173
|
|
174 while(r!=0) {
|
|
175 t = s0+r;
|
|
176 if(t<=ix0) {
|
|
177 s0 = t+r;
|
|
178 ix0 -= t;
|
|
179 q += r;
|
|
180 }
|
|
181 ix0 += ix0 + ((ix1&sign)>>31);
|
|
182 ix1 += ix1;
|
|
183 r>>=1;
|
|
184 }
|
|
185
|
|
186 r = sign;
|
|
187 while(r!=0) {
|
|
188 t1 = s1+r;
|
|
189 t = s0;
|
|
190 if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
|
|
191 s1 = t1+r;
|
|
192 if(((t1&sign)==(uword)sign)&&(s1&sign)==0) s0 += 1;
|
|
193 ix0 -= t;
|
|
194 if (ix1 < t1) ix0 -= 1;
|
|
195 ix1 -= t1;
|
|
196 q1 += r;
|
|
197 }
|
|
198 ix0 += ix0 + ((ix1&sign)>>31);
|
|
199 ix1 += ix1;
|
|
200 r>>=1;
|
|
201 }
|
|
202
|
|
203 /* use floating add to find out rounding direction */
|
|
204 if((ix0|ix1)!=0) {
|
|
205 z = one-tiny; /* trigger inexact flag */
|
|
206 if (z>=one) {
|
|
207 z = one+tiny;
|
|
208 if (q1==(uword)0xffffffff) {
|
|
209 q1=0;
|
|
210 q += 1;
|
|
211 }
|
|
212 else if (z>one) {
|
|
213 if (q1==(uword)0xfffffffe) q+=1;
|
|
214 q1+=2;
|
|
215 } else
|
|
216 q1 += (q1&1);
|
|
217 }
|
|
218 }
|
|
219 ix0 = (q>>1)+0x3fe00000;
|
|
220 ix1 = q1>>1;
|
|
221 if ((q&1)==1) ix1 |= sign;
|
|
222 ix0 += (m <<20);
|
|
223 INSERT_WORDS(z,ix0,ix1);
|
|
224 return z;
|
|
225 }
|
|
.fi
|
|
.SH "Variable Documentation"
|
|
.PP
|
|
.SS "const double one = 1\&.0\fC [static]\fP"
|
|
|
|
.PP
|
|
Definition at line 47 of file sqrt\&.c\&.
|
|
.PP
|
|
Referenced by sqrt()\&.
|
|
.SS "const double tiny = 1\&.0e\-300\fC [static]\fP"
|
|
|
|
.PP
|
|
Definition at line 47 of file sqrt\&.c\&.
|
|
.PP
|
|
Referenced by sqrt()\&.
|
|
.SH "Author"
|
|
.PP
|
|
Generated automatically by Doxygen for amath from the source code\&.
|