1
0
mirror of https://gitlab.com/rnger/amath synced 2025-10-06 02:49:59 +00:00
Files
amath/doc/man/man3/cacoth.c.3
2017-01-24 22:03:15 +01:00

72 lines
1.4 KiB
Groff

.TH "lib/cplex/cacoth.c" 3 "Tue Jan 24 2017" "Version 1.6.2" "amath" \" -*- nroff -*-
.ad l
.nh
.SH NAME
lib/cplex/cacoth.c \-
.SH SYNOPSIS
.br
.PP
\fC#include 'prim\&.h'\fP
.br
\fC#include 'math\&.h'\fP
.br
\fC#include 'complex\&.h'\fP
.br
.SS "Functions"
.in +1c
.ti -1c
.RI "\fBcomplex\fP \fBcacoth\fP (\fBcomplex\fP z)"
.br
.RI "\fIInverse hyperbolic cotangent of complex number\&. \fP"
.in -1c
.SH "Function Documentation"
.PP
.SS "\fBcomplex\fP cacoth (\fBcomplex\fP z)"
.PP
Inverse hyperbolic cotangent of complex number\&.
.PP
\fBVersion:\fP
.RS 4
1\&.0
.RE
.PP
\fBDate:\fP
.RS 4
14/09/15
.RE
.PP
Inverse hyperbolic cotangent expressed using complex logarithms:
.PP
.nf
acoth(z) = 1/2 * ((log(z + 1) - log(z - 1))
.fi
.PP
More info is available at Wikipedia:
.br
http://en.wikipedia.org/wiki/Inverse_hyperbolic_function#Logarithmic_representation
.PP
Definition at line 43 of file cacoth\&.c\&.
.PP
References cadd(), clog(), cmul(), cpack(), and csub()\&.
.PP
Referenced by ComplexNumber::HypArcCotangent()\&.
.PP
.nf
44 {
45 complex half = cpack(0\&.5, 0\&.0);
46 complex one = cpack(1\&.0, 0\&.0);
47 complex a = clog(cadd(z, one));
48 complex b = clog(csub(z, one));
49 complex c = csub(a, b);
50 complex w = cmul(half, c);
51 return w;
52 }
.fi
.SH "Author"
.PP
Generated automatically by Doxygen for amath from the source code\&.