Bug Summary

File:real/expm1.c
Location:line 166, column 16
Description:Value stored to 'y' is never read

Annotated Source Code

1/* @(#)s_expm1.c 1.5 04/04/22 */
2
3/*
4 * Copyright (c) 2015-2017 Carsten Sonne Larsen <cs@innolan.dk>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * The origin source code can be obtained from:
28 * http://www.netlib.org/fdlibm/s_expm1.c
29 *
30 */
31
32/*
33 * ====================================================
34 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
35 *
36 * Permission to use, copy, modify, and distribute this
37 * software is freely granted, provided that this notice
38 * is preserved.
39 * ====================================================
40 *
41 */
42
43#include "prim.h"
44#include "math.h"
45
46/* expm1(x)
47 * Returns exp(x)-1, the exponential of x minus 1.
48 *
49 * Method
50 * 1. Argument reduction:
51 * Given x, find r and integer k such that
52 *
53 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
54 *
55 * Here a correction term c will be computed to compensate
56 * the error in r when rounded to a floating-point number.
57 *
58 * 2. Approximating expm1(r) by a special rational function on
59 * the interval [0,0.34658]:
60 * Since
61 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
62 * we define R1(r*r) by
63 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
64 * That is,
65 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
66 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
67 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
68 * We use a special Remes algorithm on [0,0.347] to generate
69 * a polynomial of degree 5 in r*r to approximate R1. The
70 * maximum error of this polynomial approximation is bounded
71 * by 2**-61. In other words,
72 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
73 * where Q1 = -1.6666666666666567384E-2,
74 * Q2 = 3.9682539681370365873E-4,
75 * Q3 = -9.9206344733435987357E-6,
76 * Q4 = 2.5051361420808517002E-7,
77 * Q5 = -6.2843505682382617102E-9;
78 * (where z=r*r, and the values of Q1 to Q5 are listed below)
79 * with error bounded by
80 * | 5 | -61
81 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
82 * | |
83 *
84 * expm1(r) = exp(r)-1 is then computed by the following
85 * specific way which minimize the accumulation rounding error:
86 * 2 3
87 * r r [ 3 - (R1 + R1*r/2) ]
88 * expm1(r) = r + --- + --- * [--------------------]
89 * 2 2 [ 6 - r*(3 - R1*r/2) ]
90 *
91 * To compensate the error in the argument reduction, we use
92 * expm1(r+c) = expm1(r) + c + expm1(r)*c
93 * ~ expm1(r) + c + r*c
94 * Thus c+r*c will be added in as the correction terms for
95 * expm1(r+c). Now rearrange the term to avoid optimization
96 * screw up:
97 * ( 2 2 )
98 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
99 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
100 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
101 * ( )
102 *
103 * = r - E
104 * 3. Scale back to obtain expm1(x):
105 * From step 1, we have
106 * expm1(x) = either 2^k*[expm1(r)+1] - 1
107 * = or 2^k*[expm1(r) + (1-2^-k)]
108 * 4. Implementation notes:
109 * (A). To save one multiplication, we scale the coefficient Qi
110 * to Qi*2^i, and replace z by (x^2)/2.
111 * (B). To achieve maximum accuracy, we compute expm1(x) by
112 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
113 * (ii) if k=0, return r-E
114 * (iii) if k=-1, return 0.5*(r-E)-0.5
115 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
116 * else return 1.0+2.0*(r-E);
117 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
118 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
119 * (vii) return 2^k(1-((E+2^-k)-r))
120 *
121 * Special cases:
122 * expm1(INF) is INF, expm1(NaN) is NaN;
123 * expm1(-INF) is -1, and
124 * for finite argument, only expm1(0)=0 is exact.
125 *
126 * Accuracy:
127 * according to an error analysis, the error is always less than
128 * 1 ulp (unit in the last place).
129 *
130 * Misc. info.
131 * For IEEE double
132 * if x > 7.09782712893383973096e+02 then expm1(x) overflow
133 *
134 * Constants:
135 * The hexadecimal values are the intended ones for the following
136 * constants. The decimal values may be used, provided that the
137 * compiler will convert from decimal to binary accurately enough
138 * to produce the hexadecimal values shown.
139 */
140
141static const double
142one = 1.0,
143huge = 1.0e+300,
144tiny = 1.0e-300,
145o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
146ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
147ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
148invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
149 /* scaled coefficients related to expm1 */
150Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
151Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
152Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
153Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
154Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
155
156double expm1(double x)
157{
158 double y,hi,lo,c,t,e,hxs,hfx,r1;
159 sword k,xsb;
160 uword hx;
161
162 c = 0.0;
163
164 GET_HIGH_WORD(hx,x)do { ieee_double_shape_type gh_u; gh_u.value = (x); (hx) = gh_u
.parts.msw; } while (0)
; /* high word of x */
165 xsb = hx&0x80000000; /* sign bit of x */
166 if(xsb==0) y=x;
Value stored to 'y' is never read
167 else y= -x; /* y = |x| */
168 hx &= 0x7fffffff; /* high word of |x| */
169
170 /* filter out huge and non-finite argument */
171 if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
172 if(hx >= 0x40862E42) { /* if |x|>=709.78... */
173 if(hx>=0x7ff00000) {
174 uword low;
175 GET_LOW_WORD(low,x)do { ieee_double_shape_type gl_u; gl_u.value = (x); (low) = gl_u
.parts.lsw; } while (0)
;
176 if(((hx&0xfffff)|low)!=0)
177 return x+x; /* NaN */
178 else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
179 }
180 if(x > o_threshold) return huge*huge; /* overflow */
181 }
182 if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
183 if(x+tiny<0.0) /* raise inexact */
184 return tiny-one; /* return -1 */
185 }
186 }
187
188 /* argument reduction */
189 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
190 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
191 if(xsb==0)
192 {
193 hi = x - ln2_hi;
194 lo = ln2_lo;
195 k = 1;
196 }
197 else
198 {
199 hi = x + ln2_hi;
200 lo = -ln2_lo;
201 k = -1;
202 }
203 } else {
204 k = (sword)(invln2*x+((xsb==0)?0.5:-0.5));
205 t = k;
206 hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
207 lo = t*ln2_lo;
208 }
209 x = hi - lo;
210 c = (hi-x)-lo;
211 }
212 else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
213 t = huge+x; /* return x with inexact flags when x!=0 */
214 return x - (t-(huge+x));
215 }
216 else k = 0;
217
218 /* x is now in primary range */
219 hfx = 0.5*x;
220 hxs = x*hfx;
221 r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
222 t = 3.0-r1*hfx;
223 e = hxs*((r1-t)/(6.0 - x*t));
224 if(k==0) return x - (x*e-hxs); /* c is 0 */
225 else {
226 e = (x*(e-c)-c);
227 e -= hxs;
228 if(k== -1) return 0.5*(x-e)-0.5;
229 if(k==1) {
230 if(x < -0.25) return -2.0*(e-(x+0.5));
231 else return one+2.0*(x-e);
232 }
233 if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
234 uword hy;
235
236 y = one-(e-x);
237 GET_HIGH_WORD(hy,y)do { ieee_double_shape_type gh_u; gh_u.value = (y); (hy) = gh_u
.parts.msw; } while (0)
;
238 SET_HIGH_WORD(y, hy + (k<<20))do { ieee_double_shape_type sh_u; sh_u.value = (y); sh_u.parts
.msw = (hy + (k<<20)); (y) = sh_u.value; } while (0)
; /* add k to y's exponent */
239 return y-one;
240 }
241 t = one;
242 if(k<20) {
243 uword hy;
244
245 SET_HIGH_WORD(t, 0x3ff00000 - (0x200000>>k))do { ieee_double_shape_type sh_u; sh_u.value = (t); sh_u.parts
.msw = (0x3ff00000 - (0x200000>>k)); (t) = sh_u.value; }
while (0)
; /* t=1-2^-k */
246 y = t-(e-x);
247 GET_HIGH_WORD(hy, y)do { ieee_double_shape_type gh_u; gh_u.value = (y); (hy) = gh_u
.parts.msw; } while (0)
;
248 SET_HIGH_WORD(y, hy + (k<<20))do { ieee_double_shape_type sh_u; sh_u.value = (y); sh_u.parts
.msw = (hy + (k<<20)); (y) = sh_u.value; } while (0)
; /* add k to y's exponent */
249 } else {
250 uword hy;
251
252 SET_HIGH_WORD(t, (0x3ff-k)<<20)do { ieee_double_shape_type sh_u; sh_u.value = (t); sh_u.parts
.msw = ((0x3ff-k)<<20); (t) = sh_u.value; } while (0)
; /* 2^-k */
253 y = x-(e+t);
254 y += one;
255 GET_HIGH_WORD(hy, y)do { ieee_double_shape_type gh_u; gh_u.value = (y); (hy) = gh_u
.parts.msw; } while (0)
;
256 SET_HIGH_WORD(y, hy + (k<<20))do { ieee_double_shape_type sh_u; sh_u.value = (y); sh_u.parts
.msw = (hy + (k<<20)); (y) = sh_u.value; } while (0)
; /* add k to y's exponent */
257 }
258 }
259 return y;
260}